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EFFECT OF SUPPORT FLEXIBILITY AND DAMPING ON THE DYNAMIC RESPONSE

OF A SINGLE MASS FLEXIBLE ROTOR IN ELASTIC BEARINGS

by R. G. KIRK I and E. J. GUNTER 2

INTRODUCTION

The study of rotor dynamics has in r_cent years, become of increasing

importance in the engineering design of p_wer systems. With the increase

in performance requirements of high-speed rotating machinery in various

fields such as gas turbines, process equipment, auxiliary power machinery

and space applications, the engineer is faced with the problem of designing

a unit capable of smooth operation under various conditions of speed and

load.

In many of these applications the design operating speed is o_ten

well beyond the rotor first critical speed, and under these circum_tances

the problem of insuring that the turbomachine will perform with a stable

low-level amplitude of vibration is extremely difficult.

At the turn of the century H. H. Jeffcott (I) developed the fundamen-

tals of the dynamic response of the damped single mass unbalanced rotor

on a massless elastic shaft mounted on rigid bearing supports. The Jeffcott

analysis of the single mass model showed that operating speeds above the

first critical speed were possible and that a low level of vibration would

be attained once the rotor had exceeded the first critical speed.

As various compressor and turbine manufacturers adapted the flexible

rotor design concept in which the rotors were designed to operate above the

first critical speed, various units developed severe operating difficulties

which could not be explained by the elementary Jeffcott model.

Under certain conditions of high spe_d operation above the first

critical speed, such influences as internal rotor friction (2) hydro-

dynamic bearing end s_al forces (3) and aerodynamic cross coupling (4)

can lead to a destructive nonsynchronous precessive whirl motion being

developed in the rotor system.

±Instructor, Department of Mechanical Engineering_ University {_f Virginia, Charlottesvillej Virginia.

ZAssociate Professor, Departmen_ of Mechanical Engineering, University of Virginia_ Member, _3_.
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B. L. Newkirk and Kimball (5), in their early investigations of
instabilities in compressorsdue to internal friction, were able to deter-

mine experimentally that the introduction of a flexible support system
could greatly extend the rotor stability threshold speed. D. M. Smith

(6) in 1933wasthe first to verify Newkirk's findings theoretically by
expanding the Jeffcott modelwith internal dampingto include a massless

dampedflexible support system. Recent investigators such as Lund (7),

Tondl (8), Dimentberg (9) and others (I0) have shownthat flexible damped
supports may improvethe stability characteristics of high speedrotors.

The present analysis wasundertaken to primarily determine the in-
fluence of flexible supports on the synchronousunbalance responseof the
single massJeffcott rotor, and to optimize the support system character-
istics so as to minimize the rotor amplitude and forces transmitted over
a given speed range. The problemof bearing forces transmitted has been
examinedby various researchers, (II, 12, 13, 14) they have shownthat a

significant reduction in the forces transmitted can be achieved by the
proper design of the bearing support system.

For example, DenHartog (15) has shownthat the tuned vibration ab-
sorber will greatly reduce the responseof the forced vibrations of the

two-masssystem. The following analysis parallels this approach for the

case of a single massrotor excited by an unbalance load. The analysis
presents an analytic study of the tuned dampersupport system similar to

that employedby Broch (16) and also presents a generalized study performed
on the digital computer to obtain optimumsupport dampingto produce the
best responseof the rotor over a wide speed range. It is well knownthat
a dampersupport systemcan improvethe vibration characteristics of a

rotating shaft and various investigators have considered the problem
either from the standpoint of a continuous elastic systemor as a series
of lumpedmasses(17-23).

Although the results presented in this paper apply specifically to
the single massJeffcott model, the optimization procedure maybe readily
extended to morecomplexmulti-mass rotor bearing systems by employing a
finite element rotor digital computer programsimilar to the procedure
presented by Lund in Ref. 24 or by using the procedure as outlined in the

paper presented by Crook and Grantham(25) on the vibration analysis of
turbine generators on dampedflexible supports.
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EQUATIONSOFMOTION

Figure l'represents the single massJeffcott rotor mountedin damped
elastic supports. In the Jeffcott model, the shaft is considered as a
massless elastic memberand the rotor mass is concentrated in a disc

mountedat the center of the span. The shaft [n term is supported in
linear bearings which are mountedin dampedflexible supports•

Neglecting rotor acceleration and the disc gyroscoplcs, the governing
equations of motion for the rotor, bearings, and support system in complex
notation reduce to the following (SeeAppendixA for derivation):

M2Z2 + CsZ2 + CiZs - QZ2 + (Ks - i_Ci)Z s = M2e _2e i_t (I)

CbZ j - C.Zjs + KbZ b - (Ks - i_C.)ZIs -- 0 (2)

MIZ l + CIZ 1 + KIZ I - CIZ s - (Ks - I_C i)Z s = 0 (3)

where

Z = Z 2 - Z. - Z 1 = relative shaft deflection.
s j

If the internal damping C i and the aerodynamic cross coupling term Q

are excluded from the above equations then the system will be stable (26).

After the initial transient motion has damped out, it may be assumed

that the system steady-state motion is circular synchronous precession•

this case the displacements are related to the velocity and acceleration

vectors as follows:

In

Zi = A.eimtt

Z i = i_Z i (4)

,o

Z. = iwZ. =- co2Z.
I I I

*I l lustrations begin on page 38.



whereAi is in general complex.

The differential equations of motion maybe reduced to a set of algebraic
equations for the determination of the rotor steady-state motion.

(K s - M2_2 + iCs_)A2 - KsA j - KsA1 = M2eu_2 (5)

+ i_Cb)A j + K A I = 0 (6)-KsA2 + (Kb + Ks s

-KsA2 + KsA j + (KI + Ks - MI_2 + imCl)A I = 0 (7)

ROTOR AMPLIFICATION FACTOR

Consider the steady-state orbit of the flexible rotor on rigid

supports. The rotor amplitude is a function of beth the rotor and bearing

stiffness and damping characteristics. Assuming A I is zero, the reiative

journal bearing complex amplitude from Eq. 7 is given by

Ks(K s + Kb - i_C b)
A. = A2 (8)

J (K s + Kb)2 + (_Cb)2

Solving Eqo 8 for the rotor amplitude yields

(K 2 - M2_2 - i_C2)

A2 = M2eue2 (9)
(K2 - M2_2)2 + (_C2)2

where

K2 =

C 2 =

KbKs(K s + Kb) + Ks(_Cb)2

(K s + Kb)2 + (_Cb)2

Ks2C b
+C

(K b + Ks)2 + (_Cb)2 s

The rotor displacement vector Z2 may be expressed in terms of the

absolute displacement R2 and the phase angle _ as follows

Z2 = R2ei(_t - #) (10)
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where

M2eu_2
R2 =

-_f(K 2 - M2_2) 2 + (_C2)_

,:too_,[ 7
K2 - M2_2J

The above results are similar to the rotor amplitude and phase angle

results for the single mass flexible rotor on rigid supports as shown by

Thomson (27).

The rotor undamped, or natural critical speed is given by

K-_M_ =# KuKs
_c = (Kb + Ks)M 2

(II)

For the case of a lightly damped rotor system on rigid supports the

maximum rotor amplitude will occur at approximately the rotor critical

speed and the dimensionless rotor amplitude or amplification factor at

the critical speed is given by

R2 K2

A = -
u C _CC2

(12)

Example I

Consider a 97 lb. disc centered on a uniform massless elastic shaft

as shown in Fig. (I). Assume that the bearing stiffness _;L is 500,000

Ib/in and that the effective shaft stiffness Ks at the disc station is

333,000 Ib/in. Assuming light damping, the total stiffness K2 is given by

KsKb I x 0.333 x 1012
K2 = _ = 250,000 Ib/in

Ks + Kb (I + 0.333)[06

The rotor critical speed is

K=-_MK___=/250,000_c O. 25
- 1,000 rad/sec



or N = 9,550 RPM.
C

If the rotor damping Cs is assumed to be 15 Ib - sec/in and the bearing

damping coefficient Cb/2 is 80 Ib - sec/in, then the effective system damp-

ing coefficient C2 is approximately given by

Ks2Cb (0.333) 2 x 1012 x 160
+ -15+C2 = Cs

(Kb + Ks)2 (1.333) 2 x I012

= 25 Ib - sec/in

The amplification factor at the rotor critical speed is given by

K2 250,000

ACR = A = _cC-----_-=1,000 x 25 = I0.0

The amplification factor of I0 represents a very lightly damped rotor

system and indicates that the rotor amplitude at the critical speed will be

I0 times the rotor unbalance eccentricity e
U

ROTOR RESPONSE ON DAMPED FLEXIBLE SUPPORTS

Solution of Eq. 7 for the case of synchronous precession for the

shaft relative deflection Z yields
S

I Kb(K b + K ) + (_Cb)2 + i_CbKs]
Zs = (Z2 _ Zl ) s

)2 + (_Cb)2 _ (13)(Kb + Ks

Hence, in terms of the general coefficients C 2 and K2

K2 + i_(C2 - Cs) tZs = (Z2 - Zt) K (14)
S

The slmultaneous equations for the absolute shaft and support housing

motion reduce to the following

[K1 + K2 - MI_ 2 + i_o(C 2 + C1 - Cs)]A 1+ [-i_(C 2 - Cs) - K2]A 2 = 0

(15)



[-K 2 - i_(C2 - Cs)]A 1 + [K 2 - M2_2 + i_C2]A 2 = M2eu_2
(16)

If the damping terms are neglected, then the natural frequencies

of the system may be determined by the expansion of the determinant of

coefficlents. The resulting frequency equation may be expressed as follows:

1 I +K_°1,2/_c 2" + 2_ _/,I +K 1)2 M_ K (17)

where

Figure 2 represents the dimensionless critical speeds vs. the dimen-

sionless support stiffness factor K for various values of support to rotor

mass ratios. Note that the incorporation of the flexible support with the

rotor bearing system causes two critical speeds to occur; one which is

higher and one which is lower than the original rotor critical on rlgid

supports.

To solve for the complex support and rotor amplitudes A 1 and A2, Eq.

16 and 17 may be expressed as follows:

Eaij + ibij]A j = Fi; j = I, 2; 1.= I, 2 (18)

Multiplying Eq. 19 by the complex inverse matrix of coefficients end ex-

pending yields

FI

F2

A1 =

a12 + ibm2I

a22 + Ib221

A P

(19)

Where

= dr + idi

d r = (K 2 - M2_o2)(K1 - M1_2) - K2M2w 2 - C1C2o_2 - _2Cs(C 2 - Cs)



d1 = Clm(K 2 - M2u2 ) + C2_O(K1 - Ml_O2 - M2_2 ) + Cs=(K 2 + M2o_2)

Expanding Eq. 20

Fla22 - F2a12 + i(Flb22 - F2b12)

AI = d + id. (20)
r i

In this case only an external unbalance excitation force F2 is acting

on the shaft and no external exciting force F I is assumed to be present on

the support system. For example, an excitation for F I may be transmitted

to the rotor system through the support structure by vibrations of auxiliary

or adjacent equipment.

F2[al2d Y + b12d i + i(b12d Y - a12di) ]
AI = - (21)

dr2 + di2

Assume A I is of the form

AI = Air - iA1i (22)

The complex support amplitude Z I after some complex algebraic manipulations

is given by

ZI = Alei_t = Rlei(_t - Bl) (23)

where

R 1 = -_JAlr2 + Ali2

do

i]I = tan -I (__t)
' clr

If the shaft damping coefficient Cs is considered small in comparison

to the effective damping coefficient C2 than the system displacements and

phase angles are given as follows

/K2 2 + (_C2)2

R1 = M2eu_2"Vd--- _ 2
+d I

(24)

and the phase angle of the support motion relative to the rotating unbal-

ance load is given by

8



Bl = tan-I --"
LK2dr+ u_C2di]

Since the complexrotor support motion Z1 is glven by

i (_t - 131)
Zl = XI + iY1 = Rle

(25)

Then for example, the horizontal and vertical componentsof the support

motion are given by

-- r di2
{cosot,;I
sin(_t 81

In a similar fashion, the complex rotor amplitude Z 2 is given by

(26)

all + ib11 i_t
Z2 = M2eu_2 d + id. e (27)

r I

After some manipulation, Eq. 28 reduces to the following

i(_t - 82)
e

where

/(K 1 + K2 - Ml_2) 2 + ((C 1 + C2)_) 2 '

Z2
M2eu_2 v_l 2 + d 2

dr i

(K + K2 - Ml_2)d i -
(K 1 + K2 Ml_2)d r +

(C 1 + C2)_dr)
(C 1 + C2)ed I

82 = tan -I

The relative journal displacement is given by

(28)

(29)

Zj = Z2 - Z 1 - Zs

Where the relative shaft deflection is

Z
s

(Z 2 - Z 1)

KS
[Ks - K2 - i_C2]

Solving for the journal displacement

(3O)

(31)

9



i (at - 6j )
Zj = Rb e

where,

R,j = M2euW2 / (K1 -d 2 + d.2M1_2) 2 + (eC1)2

r I

Ks _ K2)2
x +

Ks Ks/

(32)

and the phase angle 8j between the journal amplitude and rotating un-

balance force is given by

( (K1 - Ml_2)d - _Cldr ( _C2 )8j = tan -I i + tan-1 "K;- K2 (33)
(K I - Mi_2)d i + _Ctd i

FORCES TRANSMITTED

The magnitude of the resultant forces transmitted through the bearings

and the support are of considerable interest to the designer from a stand-

point of bearing life and system isolation. It is desirable to minimize

the forces transmitted through the supporting structure and foundation so

that other machines or piping systems are not excited. The magnitude of the

force transmitted through the bearings is given by

Fb = Rj-_Kb2 + (_Cb)2 (34)

and the force transmitted through the support system is given by

F1 = R] _/K1 2 + (eC1)2 (35)

An indication of the effectiveness of the support system in attenuating

the forces transmitted to the foundation is the support dynamic transmissi-

bility factor TRD which will be defined as the ratio of the magnitude of the

transmitted support force to the rotating unbalance load. If the dynamic

transmissibility is less than I, then the support system possesses good

attenuation characteristics. Analysis has shown that if the support

housing impedance characteristics, which are determined by the housing mass,

I0



stiffness and damping, are mismatched to the rotor-bearing system then,

under certain speed conditions the dynamic transmissibility may exceed I.

The dynamic transmissibility for the support is defined as

F 1 /(K22 + (_C2)2)(K12 + (C1_) 2)

TRD - --V (36)2 + d 2
M2eu_2 dr i

If it is assumed that the rotor is operating well above any of the

system critical speeds then the dynamic transmissibility is approximately

given by

TRD _"_ (K22 + (_C2)2)(K12 + (C1_)2)
= (37)

MlZM22

The above expression leads to the well known conclusion that to

minimize the forces transmitted through the support for supercritical

speed operation in the Jeffcott model, the support damping should be

zero and the support stiffness should be as light as possible (28).

This is a highly undesirable design practice for several reasons since

large rotor amplitudes and forces transmitted may be encountered when pass-

ing through the rotor critical speeds, and also the rotor system would be

extremely shock sensitive and particularly susceptible to self-excited

whirl instability under such conditions.

A compromise support damping coefficient should be selected to either

minimize the rotor amplitudes or the forces transmitted over the operating

speed range and also be sufficient to insure adequate rotor stability.

ANALYSIS OF SYSTEM UNBALANCE RESPONSE - TUNED SYSTEM

Figure 3 represents a computer generated plot of the dimensionless

rotor relative amplitude versus the dimensionless rotor speed for the

case of K = M = I. This relative rotor amplitude is equivalent to the

motion monitored by a proximity probe mounted in the casing measuring

the rotor motion at the center span. This system represents a tuned

condition in which the support stiffness ratio K is equal to the support

II



massratio M. With no support damping in the system, the tuned support
will cause the relative rotor amplitude to be zero at a speed correspond-

ing to the rotor critical speed with rigid supports. The introduction

of support massand flexibility has caused two critical speeds to appear

in the system; one above and one below the rigid support rotor critical.

Note that whenthe support damping is relatively low the amplitudes at
the two criticals becomesextremely high.

As the dimensionless support damping ratio C increases from 0.01 to

I0 the rotor amplitudes at the system critical speeds decrease while the

amplitude increases at a speed corresponding to the rigid support critical

speed (_/_c = I). Note that in this case the dampingvalue of I0 appears
to be close to an optimum value for the minimization of the resonance

amplitudes. If the support damping is further increased from I0 to 50,

Fig. 3 indicates that there will be only one critical speed present in

the system which will correspond to the rigid support critical. Although

the dampingof C = 50 is over 5 times the optimum value, the maximum

amplitude is only I/3 the rigid support value of I0. As the support damp-

ing approaches infinity, the rotor amplitude will asymptotically approach
I0.

Figure 4 represents the absolute dimensionless rotor motion for various

values of support damping ratio and is similar to Fig. 3. It should be

noted that the damping coefficient of I0 also appears to be close to the

optimum damping for the absolute motion as well as the relative motion.

It is of interest to note that the various damping lines all intersect
at a commonpoint P in the plot of absolute as well as relative rotor motion.

If the rotor amplification factor A is I00 (implying light rotor damping)

then there will be two commonpoints of intersection P and Q on the response
plots (see Fig. I0) similar to that shownby Den Hartog for dampedvibration

absorber (15). The intersection points P and Q will occur at speeds res-
pectively below and above the rigid support critical speed. The rotor

amplitude may be minimized for the case of the absolute rotor motion by
selecting the damping such that the slope of the response curve is zero

at point P, and zero at point Q to minimize the rotor relative motion.

12



Figure 5 represents the phase angle between the rotating unbalance
vector and the absolute rotor displacement vector for various damping

coefficients. The phase angle for the single massrotor on rigid supports
(Jeffcott model) increases as the speed increases from 0 to 90 degrees

at the critical speed and asymptotically approaches 180 degrees as the

rotor speed greatly exceeds the critical speed. The phase angles of the

rotor on dampedflexible supports has a considerably different behavior

from that of the rigid support rotor. For light values of supporting damping

(C = 0.01), the phase angle increases rapidly to 180° as the system passes

through the first critical speed and drops to almost 60 ° as it passes

through the second critical speed. As the speed greatly exceeds the

highest critical speed the phase angle again approaches 180°• The phase

angle of 180° indicates that the rotor mass center lies along the rotor

spin axis. As the support damping coefficient is increased beyond 5 for

the case of the tuned system, the reduction in phase angle above the first

critical speed is suppressed. This phenomena of phase angle reversal

above the first critical speed has been observed experimentally.

Figure 6 represents the support amplitude versus speed for various

damping values and indicates that with very light support damping there

will be large support resonances. As the damping is increased beyond

C = I0 the resonances are suppressed and the amplitude is only slightly

greater than I. For C = 50 there is only a small peak observed in the

support system which occurs at a speed corresponding to the rigid support

critical speed. The addition of high damping (C > 50) freezes the support

and limits its motion drastically.

Figure 7 represents the support phase angles versus speed ratio for

various values of support damping. The phase angle for light damping

(C = 0.01) is zero at low speeds and goes to 180 degrees as it passes

through the first critical and then shifts to 330 ° upon passing through

the second critical speed. If the rotor damping is light (A = I00) the

support phase angle will approach 360 ° after passing through the second

critical speed. Note that the various damping lines intercept at three

points. The first node point represents the first system critical speed,

13



the second node point represents the rigid support critical speed and the

third node point represents the second critical speed on flexible supports.
In the discussion of the single massflexible rotor presented in vibration

texts (27) the phase change is only shownfrom zero to 180 degrees. In

more complex systems with flexible supports, the phase change mayvary

between 0 and 360 degrees. For example in multimass systems the authors

have observed phase changesof n times 180 degrees where n represents the

numberof system critical speeds. The measurementof rotor and support
phase angles have been neglected and limited data has been reported in the

literature. This is an extremely useful variable which when incorporated

with displacement measurementscan be used in balancing flexible rotors
or impedancecalculations of the support system.

Figure 8 represents the dimensionless bearing forces transmitted for

the tuned system. The dimensionless force transmitted is obtained by
dividing by the transmitted force corresponding to the value at the crit-

ical speed of the original rotor on rigid supports. Becauseof the light
shaft damping the force transmitted curves are similar in appearance to

the displacement curves. Note that for the support dampingcoefficient of

C = I0 the forces transmitted to the bearings are only 17 percent of value

transmitted for the rotor bearing system on rigid supports.

Figure 9 represents the force transmitted through the bearing supports

to the foundatation or base for various values of supporting damping. With
a very lightly dampedsupport system, (C = 0.01) the support amplitude and

force transmitted will be particularly high at the first critical speed
where the bearing and support motions are in phase. At the second critical

speed, the support amplitude is lower than the amplitude attained at the

first critical speed. This is because the bearings and support motions

are out of phase which enables the bearing dampingto help attenuate the

support motion. It is of interest to note from Fig. 8, for the tuned

rotor system, the bearing force transmitted at (_/_c) = I with an undamped
support system is zero. Figure 9 showsthat the corresponding force trans-

mitted through the support system at _/_c = I has been reduced to only 10%
of the rigid support value.

14



The force transmitted for an undampedsupport system at a speed

ratio of four is approximately 10%of the rigid support value. This con-

dition would be desireable if it were possible to accelerate through the

criticals, thereby avoiding the large steady-state amplitudes and forces

developed.

The near optimum dampingof I0 increases the support forces transmitted

in the supercritical speed region to 30%of the rigid support value and

the overdampedsupport system (C = 50) has increased to nearly 80%. Hence,

the support damping introduced to suppress the system resonances will cause
the forces transmitted to increase in the supercritical speed region.

If the system is designed to operate over the entire speed range shown,

then the near optimum value of damping (i.e., C = I0) for suppressing the
rotor absolute amplitude also produces the most desirable attentuation of

forces to the system support structure.

OPTIMUMDAMPINGFORTUNEDSYSTEM

From the observation of the computer generated displacement and force

transmitted plots it is apparent that there exists an optimum damping to

either minimize the rotor amplitudes or the forces transmitted over the

entire speed range.

For example to minimize the absolute rotor motion as shown in Fig. 4

or the relative rotor motion shown in Fig. 3, the method of (16) may be

used in which the damping is chosen so that the slope of the amplitude

curve is zero at points P and Q respectively. In the tuned system where

K/M = I for light rotor damping (A = I00), the rotor amplitudes at points

P and Qare independent of the support dampingas shown in Fig. I0 and

can be shownto be equal to

X2 = x2/eulp, Q = Jl + 2M (38)

Therefore with the tuned system illustrated with a mass ratio of M = I,

the maximumamplitude at P or Q will be 1.732 times the rotor unbalance

15



eccentricity. The optimum damping maybe selected so that the tangent to

the amplitude curve at either point P or Q has a zero slope. By selecting

the optimum damping in this fashion it is seen that the maximumamplitude

in the system will not exceed the value given by Eq. 38. Thus it is readily
apparent that to minimize the rotor response over a given speed range, the
support mass should be kept as light as possible.

After considerable algebraic manipulation (28) the optimum damping
coefficient for both points P and Q is given by the following expression

_2 = ,4M3_3 - 3M2(4M + 3)_ 2 + M(12 2 + 13M + 8)_ - M(I + 2M) 2

-12M92 + 8(I + 2M)9 - (I + 2M)
(39)

where,

C

= C1/C C = C1/C 2 x I/2A = C1 2K 2

= _i 2 or _2 2 depending on whether the value calculated is for point

P or Q respectively.

and

_1 2 =
F_+2M

I + _I + 2M

_2 2 = /I + 2M
F'l + 2M- I

For example, when M = I and for the first node, P:

= DI 2 - F_- = 0.634

and

_2 = 0.447

Hence

16



C1

opt

In a similar fashion

for point P

el

_ccopt = 0.559
for point Q

Example 2

As an example of the application of the tuned support design criteria

consider the rotor of Example I mounted in flexibly supported bearing housings

which weigh 48.5 Ibs and have a stiffness of 125,000 Ib/in. The total

support weight WI and stiffness K1 is given by

WI = 2 x 48.5 = 97 Ib

KI = 2 x 125,000 = 250,000 Ib/in

Hence,

M = M1/M 2 = 1.0

K = KI/K 2 = 1.0

The critical damping coefficient Cc is given by

2_2 500,000 Ib/in

Cc _ 1,000 rad/sec
C

- 500 Ib-sec/in

Thus the support damping coefficients required to make the slope of

the rotor amplitude curve zero at points P and Q are respectively given

as follows

= 0.688 x C
CI Ip c

= 0.559 x C
CI lq c

= 344 Ib-sec/in

= 279.5 Ib-sec/in
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These calculations are valid only for the case of zero dampingon

the rotor and in the bearings (i.e., A = ®) and only for the tuned system
(i.e., K -- M). For a more realistic solution, a value of A = I0 was chosen

and numerouscases were then programmedon a digital computer to arrive at

a value of optimum amplitude and required damping. This approach is dis-
cussed in the next section of this paper but the results for the tuned

system are very nearly the sameas the results arrived at analytically for
the case of A = _ and are presented in Fig. II.

The results shown in Fig. II are approximately correct for systems

having moderate to light dampingon the rotor (i.e., I0 <-A < _). Note

that the smaller the mass ratio M is, the lower the peak response will be

and also the lower the required support damping will be. For example, if

the mass ratio is 0. I, then the maximumdimensionless amplitude will be only
I.I and the required damping ratio will be 5 as comparedto a value of 13.6

for an M ratio of I. Figure 12 is a response plot for the tuned system

K = M = 0. I which illustrates the validity of the results plotted in Fig.
II. The response curve for a damping ratio of 5 passes almost horizontal

through the node point and has the low amplitude ratio as indicated by
Fig. II.

Example 3

Consider a rotor system similar to Example 2 in which the rotor rigid

support amplification factor A = I0.

For a tuned support system the dimension support damping coefficient

is obtained from Fig. II for M = I as follows

C = CI/C 2 = 13.6

where C2 is given as 25 Ib-sec/in (Example I).

Therefore,

C I = 13.6 x C2 = 340 Ib-sec/in
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Note that this value is approximately the sameas the value given in Example

2 for the required dampingat point P corresonding to A .

This indicates that each support must have 170 Ib-sec/in dampingto

achieve the optimum response of about 1.7 times the unbalance level of the
rotor.

Next consider a tuned support with a massand stiffness ratio of 0. I0

(see Fig. 12). Corresponding support weight and stiffness are given as
follows

WI = 9.7 Ib/in

K1 = 25,000 Ib/in

The required damping is thus found from Fig. II to be

C ---5.0

or

Cl = 5 x 25 = 125 Ib-sec/in

Thus only 62.5 Ib-sec/in damping per support is required to obtain an

optimum response of I.I times the unbalance level of the rotor. This value

of I.I is in comparison to a maximum response of I0 times the unbalance

level for the rigidly mounted rotor-bearing system.

OPTIMIZATION OF SUPPORT DAMPING FOR OFF-TUNED CONDITIONS

In general it is not possible or necessarily desirable to have a

tuned support system. The support to rotor mass ratio is usually dic-

tated by design considerations and can be varied only within certain

ranges. Figure II shows that for best reduction of rotor amplitude, the

support mass should remain as light as possible. However, it will be

shown that even with high mass ratio support systems the rotor amplitudes
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can be attenuated by a factor of 5 by proper selection of the stiffness

and damping coefficients.

To evaluate the optimum damping for off-tuned conditions the computer
program was run for various support massand stiffness ratios and each of

these for various dampingcoefficients. For example, Fig. 13 represents

the amplitudes at the rotor first and second critical speed for various
massratios with a dimensionless stiffness ratio of K = I as the mass ratio

and damping are varied. The solid lines represent the amplitude at the
second critical speed and the dotted lines represent the amplitude at the

first critical speed. With moderate support damping ratios it is observed
that as the mass ratio increases the amplitude at the first critical reduces

while the amplitude at the second critical increases. The optimum damping
was selected as the intersection of the amplitudes at the first and second

critical for a particular value of damping. For example, the lowest optimum
amplitude point on the plot is given by a damping ratio of I0 and produces

an amplitude ratio of about 1.5. Several plots similar to Fig. 13 were

produced and the results were then crossplotted to obtain plots of amplitude
versus damping ratio.

Figure 14 represents the maximumrotor amplitude vs. support damping
ratio for various values of dimensionless support stiffness for a rotor

bearing system with a low support massratio of 0.01. Figure 14 shows

that for this particular case, the lowest amplitude is achieved by a low
support stiffness ratio of K = 0.01 which is of the sameorder as the mass

ratio. With this low support stiffness, there is a wide range of support
damping (re. C = I ÷ 6) that can be used to achieve the low level of

rotor response.

Thus, under proper design conditions the support dampingmay be

allowed to vary by a considerable amount without impairing the rotor
performance. As the support stiffness ratio increases, the maximumrotor

amplitude response also increases and the required support damping must
be larger. For example, if the support stiffness ratio increases from

0.01 to 2.0, the optimum damping required increases by a factor of 15 from

approximately 2 to 30.
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Note also that for high stiffness ratio support systems, the per-

missible range of the support damping coefficient is very narrow, and

that either a reduction or an increase of damping beyondthe optimum

value will result in a rapid gain in rotor response.

It is also of interest to note that if a high support stiffness (K = 2)

is used in conjunction with a low value of support damping (C < 2) then the

rotor response will be worse than the original rotor response on rigid

supports (A = I0).

Figure 15 represents the maximumrotor response vs. support damping

for a high support mass ratio system (M = 2). It is obvious from the

comparison of Figs. 14 and 15 that the high massratio support system is

less desirable. The minimumrotor amplitude that can be achieved is X2/E = 2

with a tuned support where K = M = 2 and a support dampingcoefficient of

C = 20. (Also see Fig. II on the tuned system.) As the support stiffness

ratio is reduced, the rotor response curve increases in the optimum damping

region.

If it is not possible to incorporate a high value of support damping

into the system (C = 20), then the rotor amplitude can still be reduced

to 40%of the original rotor response by a low support dampingvalue of

C = I and a reduced support stiffness ratio of K = 0.7. For low values of

support damping, if the support stiffness increases beyond K = 0.7, the

rotor response rapidly increases.

A series of plots similar to Figs. 14 and 15 were produced for various

mass ratios in order to determine the optimum rotor response for off-tuned

support conditions. Figure 16 represents the rotor maximumamplitude vs.

the support mass ratio for various values of support stiffness with optimum

damping.

For the case of A = I0, Fig. 16 illustrates that the lowest amplitude

can be achived with a low mass ratio support system. With a high mass ratio

support system such as M = 5, the rotor amplitude X2 can be reduced from I0

to 2.8 by meansof a tuned support stiffness of K = 5.0 and optimum damping.
Note that as the support stiffness becomesvery light, the maximumrotor
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amplitude increases to 7.5.

At a low value of support mass (M = 0. I), the rotor amplitude increases

as the support stiffness increases. The required optimum damping required

with the low mass ratio support is found to be given approximately by the
relationship that C = 15K for M < 0.2.

TRANSIENTANALYSIS

The previous discussion has been concerned only wi_h the steady-state
response of the rotor due to unbalance and has not considered the rotor

initial transient motion. As discussed previously, the dampedflexible

support system is important, not only from the standpoint of reduction of
synchronous unbalance response, but also in the control of self excited

vibrations such as caused by internal friction, aerodynemic excitation, etc.

Therefore to investigate the general rotor motion and also to provide a

check on the steady-state analysis, the rotor equations of motion were

integrated forward in time on the digital computer using a modified 4th

order Runge-Kutta integration procedure. This procedure is of importance

particularly if the analysis is extended from a linear bearing or support

system to include a nonlinear hydrodynamic damper bearing as presented in
Ref. 13.

The dimensionless rotor and support transient orbits were automatically

computer plotted by a Calcompplotter with the following dimensionless
parameters

X = X/eu, y = y/e u

Figure 17 represents the initial transient orbit of a 96.6 Ib rotor

similar to ExampleI in highly dampedsupport (C = 43) for the first 12

cycles of shaft motion. The support massratio and the support stiffness

ratio are both approximately the same(0. I0) which represents a tuned

system. Becauseof +he excessive support dampin_the maximumforce

-transmitted to the support is 2.16 times the unbalance force while the

force transmitted to the bearings is reduced by about 40%. The magnifications
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of the force to the support would be highly undeslrable for applications

such as aircraft jet engines. For example, various investigators have
observed that such a situation occurs with the hydrodydynamic squeeze film

bearing whenoperating at excessive eccentricity ratios (29).

Figure 18 represents the transient orbit for the samerotor system

except that the support damping has been reduced by a factor of I00 from

C1 = 1,000 Ib-sec/in. to I0 Ib-sec/in. In this case, the maximumforce
transmitted through the support is less than 16%of the rotating unbalance

force and the bearing force transmitted is below 9%. This orbit is

analogous to a suddenly applied unbalance such as a blade loss in an engine.

Although the forces transmitted have been greatly reduced with the low

stiffness and damping .'.upport system, the rotor has developed a large
initial transient motion of over I0 times the unbalance eccentricity and

this transient motion is not readily dampedout.

In Fig. 19, the rotor transient motion is depicted with an optimum

damping coefficient of C = 5.5 for minimumrotor response as determined

from_he steady-state analysis. The transient response is rapidly suppressed

after seven cycles of shaft motion to produce a small stable synchronous orbit.
The transmitted forces to the bearings and support are nearly balanced

to achieve approximately a 75%attenuation of the unbalance load.

SUMMARYANDCONCLUSIONS

The equations of motion for a single mass rotor-bearing system on

dampedflexible supports have been derived and studied considering both

a steady-state and transient type analysis. Design charts for both tuned

and off-tuned support conditions have been presented.

The analysis maybe summarizedby the following general statements.

I. The critical speed response of the single massJeffcott model

rotor maybe completely eliminated by meansof a low mass ratio flexible

support with optimum damping. In this case the rotor steady-state ampli-
tude of motion over the entire speed range will only be slightly more than

the rotor unbalance eccentricity.

23



2. ]he support mass ratio should be kept as light as possible
to achieve minimumrotor amplitude.

3. The rotor amplitude may be considerably attenuated even for high
mass ratio support systems by tuning the Support stiffness such that

K = M and incorporating optimum damping for the tuned conditions.

4. With a low mass ratio support system, the required value of
optimum damping is not critical and can vary by a _:actor of I0 without

appreciably effecting rotor performance.

5. As the mass ratio increases the required ,,alue of optimum damping

increases rapidly and the permissible range of varTation of the support
damping diminishes.

6. The off-tuned support (K # M) can be designed to produce a con-
siderable improvement in system response in comparison to the rotor on
rigid supports.

7. If insufficient damping is incorporated in the support then the

resulting rotor steady-state amplitude may be larger than the original
rotor response for support stiffness values K > I.

8. If there is excessive support damping (C > 20) with a low mass

ratio support (M = 0. I), then the forces transmitted through the support
may exceed the unbalance forces (TRDS> 1.0).

9. Although the steady-state analysis showsthat the rotor amplitude

will be small for an underdamped(C < 0.50) low mass ratio support system,
the orbital analysis showsthat a large initial transient motion can be

generated due to the suddenly applied unbalance force and that this motion
is not readily attenuated.

I0. The transient program indicates that a rotor with an underdamped

and low stiffness ratio support system is highly susceptable to self

excited non-synchronous precession or whirling.

II. The optimum damping based on minimization of the rotor steady-

state amplitude for both tuned and off-tuned conditions produces a satis-

factory transient response from the standpoint of rapid reduction of the
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initial transient motion, improved system stability and reduction of the
forces transmitted.
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APPENDIX A

DISCUSSION

A high speed rotor shaft may be considered as a continuous elastic

member with variable mass and inertia properties along its length. The

rotor shaft usually has attached to it such components as turbine or

compressor blades, impeller disks, or spacer assemblies or seals. If

the axial dimensions of each rotor component is small in comparison to the

overall length of the rotor, then each component may be treated as a con-

centrated mass with a polar moment of inertia equivalent to that of the

original component. If the mass of the components are large in comparison

to the shaft mass connecting the components, then the shaft weight can

be neglected or considered to be located at the mass stations. If the polar

moment of inertia of each section is ignored, then the stations may be

considered as concentrated masses, rather than distributed in the plane

of the rotor element. However, if the sections whirl In a plane, perpen-

dicular to the spin axis then the gyroscopic moments do not act on the

system and hence the equations reduce to the same as if point masses were

assumed.

The position vector of the nth mass center is given by

_j --L"P' = _b + + "6"s +eu

where

_b = vectoral bearing support deflection

6. = vectoral journal deflection
J

= vecforal shaft deflection
S

= displacement of mass center from the shaft centerline
U
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The system being analyzed has been reduced to a single mass rotor

mounted in Idealized linear bearings and the bearings are in turn mounted

on damped, elastic supports. By considering only small deflections, the

spring rate of the flexible, massless rotor shaft may be considered to be

linear.

The rotor disk (see Fig. I) is considered to whirl in a plane and

hence no gyroscopic moments are acting on the system. The orthogonal support

and bearing spring rates are assumed symmetric and no cross coupling terms

are considered to be acting at the support housings. The aforementioned

assumptions allow the equations of motion of the system to be written as

total differential equations.

DERIVATION OF EQUATIONS OF MOTION

A.I Kinematics

The position vectors to the mass stations are given by

mI • bearing M1/O

housing mass P = Xln x + Y1ny

m2: rotor mass

M2/O

P = (X2 + e cose)n + (Y2 + e sine)n
u x u y

The velocities of the mass stations are given by

MI/O

_M2/O .

V = (X2 - eueSine)-n' x + (Y2 + eueCOSe)_y

(A.I)

(A.2)

(A.3)

(A.4)
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A.2 Kinetic Energy

The kinetic energy of the system is given by

2 3 3
I _ (M.-_. "_'.)+ I _ _ ¢ij_i_ "T = _ i=I I s I _ i=I j=l J

(A.5)

neglecting the gyroscopic couples acting on the disc, the system kinetic
energy reduces to

I (XI2 YI2) + _'M2[(X2 - eu uT =_ Ml + I esine)2 + (Y2 - e OcosS)2]

I 02 (A 6)+ _" Czz

A.3 Potential Energy

The potential energy of the system is composed of the sums of the

potential energy of the #lexible shaft, the potential energy of the bearings,

and the energy of support structure as follows

I [Ks(Xs 2 + Ys2) + Kb(X j JV = _ 2 + y.2) + KI(X12 + Y12)]

where

(A.7)

X =X 2 - X1 - X.
s j

A.4 Dissipative Energy

The system dissipative energy consists of the damping functions provided

by the bearing support system, the bearings, and the external and internal

rotor damping and the aerodynamic rotor cross coupling as described by

Alford (4).

I " 2) + Cs(X22 + y22)D = _. {CI(XI 2 + Y12) + Cb(Xj2 + Yj

+ Cl [xs2 + Ys2 + 2e(YsXs - XsYs)] + Q(Y2X2 - X2Y2)} (A.8)
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The internal damping function is dependent upon the rotor precession rate

and can cause self excited whirl instability when the rotor is operated

above the critical speed (26). Alford has demonstrated that the aerodynamic

cross coupling stiffness term can also cause rotor instability when the

rotor speed is supercritlcal. When the system dissipation function is com-

prised of only the first three terms, the system is inherently stable•

A.5 Lagranges Equations

The governing equations of motion are obtained from Lagranges Equations.

which state:

d EaL ] _ aL + aD = F
dt • _-- qr

aqr aqr aqr

where

(A.9)

L=T-V

The total number of equations of motion obtained will be equal to the

number of degrees of freedom of the system which is seven and are given as

follows.

Rotor

X2: M2X2 + CsX 2 + Ci(X 2 - X 1 - Xb) + Ks(X 2 - X1 - X.)J

Y2:

+ QY2 + _C.(Y2 - Y1 - Yb ) = M2eu(_2c°s(_t) + _sin(_t))I

(A.IO)

,°

M2Y2 + CsY2 + Ci(Y2 - Y1 - Yj) + Ks(Y2 - Y1 - Yj) - QX2
(A. II)

- _Ci(X 2 - X1 - Xj) = M2eu(_2sin(et) - _sin(wt))
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cr

Aj

A1

A2

C

Cb

C
C

C.
I

C
S

C;

C2

e
u

F1

F b

K

Kb

K
s

K1

K2

M

M1

M2

Q

Q

NOMENCLATURE

Amplification factor at rigid support critical -

Complex bearing amplitude, in

Complex support amplitude, in

Complex rotor amplitude, in

Damping ratio = CI/C 2 (DIM)

Bearing damping, Ib-sec/in

Critical damping coefficient, Ib-sec/in

Rotor inter_,al damping, Ib-sec/in

Absolute shaft damping, Ib-sec/in

Support damping, Ib-sec/in

Effective rotor-bearing damping, Ib-sec/in

Rotor mass eccentricity, in

Force transmitted to foundation, Ib

Force transmitted to bearing housing, Ib

Stiffness ratio, KI/K2

Bearing stiffness, Ib/in

Rotor-shaft stiffness, Ib/in

Support stiffness, Ib/in

Effective rotor-bearing stiffness, Ib/in

Mass ratio, = MI/M 2 (DIM)

Support mass, Ib-sec2/in

Rotor mass, Ib-sec2/in

Ist node point on response plot

Rotor cross-coupling stiffness, Ib/in

2nd node on response plots
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R2

T

TRD

V

WI

X
s

Xl

X2

X.
J

Ys

YI

Y2

Yj

Z
s

Zl

Z2

C_

B1

82

Bb

8

Y

¢

Rotor absolu displacement amplitude

Kinetic energy

Transmissibility = F1/(M2eu_2)

Potential Energy

Velocity, in/sec

Support weight, Ib

Defined as X2

Shaft relative displacement in x - direction

Support displacement in x - direction

Rotor absolute displacement in x - direction

Journal relative displacement in x - directlon

Shaft relative displacement in y - direction

Support displacement in y - direction

Rotor absolute displacement in y - direction

Journal relative displacement in y - directlon

Complex shaft relative amplitude

Complex support amplitude

Complex rotor amplitude

Rotor angular acceleration, rad/sec 2

Phase angle of support motion relative to rotor unbalance, DEG

Phase angle of rotor motion relative to rotor unbalance, DEG

Phase angle of bearing motion relative to rotor unbalance, DEG

Angular displacement, rad

Defined as K/M (DIM)

Damping ratio = cl/c c (DIM]

Rotor absolute amplitude phase angle, DEG
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w

P

W
C

_I, a2

Moment of inertia

Optimum amplitude for tuned system

Defined as _i 2 or _22 when calculating required damping at point

P or Q respectively

Rotor angular velocity, rad/sec

Rotor system critical speeds, rad/sec

Rigid support critical speed, rad/sec

Speeds at which the node point P and Q occur on response plots

34



REFERENCES

i .

.

.

,

.

6.

,

.

.

I0.

II.

12.

13.

Jeffcott, H. H., "The Lateral Vibrations of Loaded Shafts in the

Neighborhood of a Whirling Speed ... The Effect of Want of Balance,"

Phil. Ma_. Series 6, Vol. 37, 1919, p. 304.

Newkirk, B. L., "Shaft Whipping," General Electric Rev., Vol. 27, 1924.

p. 169.

Newkirk, B. T., Taylor, H. D., "Shaft Whipping Due to Oil Action in

Journal Bearings," General Electric Review, Vol. 28, pp. 559-568.

Alford, J. S., "Protecting Turbomachinery from Self-Excited Rotor

Whirl," J. of Eng. for Power, Trans. ASME, Series A, No. 4, Oct. 1965,

pp. 333-344.

Kimball, A. L., "l, fernal Friction as a Cause of Shaft Whirling," Phil.

Mag., Vol. 49, 1925, pp. 724-727.

Smith, D. M., "The Motion of a Rotor Carried by a Flexible Shaf# in

Flexible Bearings," Proc. Roy. Soc. (A), 142, 92 (1933).

Lund, J. W., "The Stability of an Elastic Rotor in Journal Bearings with

Flexible Damped Supports," Journal of Applied Mechanics, Trans. ASME,

Vol. 87, Series E, 1965, pp. 911-920.

Tondl, A., Some Problems of Rotor Dynamics, London, Chapman and Hall,

Ltd., 1965.

Dimentber_F. M., Flexural Vibrations of Rotating Shafts, Butterworths,
London, 1961.

Gunter, E. J., "The Influence of Internal Friction on the Stability

of High Speed Rotors," Journal of Engineering for Industry, Trans.

ASME, Series B, Vol. 89, Nov. 1967, pp. 683-688.

Lund, J. W. and Sternlicht, "Rotor-Bearing Dynamics with Emphasis on

Attenuation," Journal of Basic Engineering, Trans. ASME, Series D,

Vol. 84, NO. 4, 1962, pp. 491-502.

Lund, J. W., "Attenuation of Bearing Transmitted Noise - Vol. 2, Part I:

Attenuation of Rotor Unbalanced Forces by Flexible Bearing Supports,"

Report No. EC 232, prepared for Bureau of Ships under Contract No. Bs-

86914, Aug. 1964.

Gunter, E. J., "Influence of Flexibly Mounted Rolling Element Bearings

on Rotor Response Part I - Linear Analysis," J. of Lub. Tech., Trans.

ASME, Vol. 92j Jan. 1970.

35



14.

15.

16.

17.

18.

19.

20.

21.

22.

Dworski, J., "High-Speed Rotor Suspension Formed by Fully Floating

Hydrodynamic Radial and Thrust Bearings," Journal of Engineering for

Power, Trans. ASME, Series A, No. 2, April 1964, pp. 149-160.

Den Hartog, J. P., Mechanical Vibrations, McGraw-Hill Book Co., Inc.,

New York and London, 1956, Fourth ed.

Brock, J. E., "A Note on the Damped Vibration Absorber," Journal of

Applied Mechanics, Vol. I/4 Trans. ASME, Vol. 68, 1946, p. A-284.

Voorhees, J., Mellor, C. C., and B. G. Dubensky, "the Control of

Shaft Vibrations at Hypercritical Speeds," ASME Paper 63-MD-30

Presented May 1963, Design Eng. Conf., New York.

Miller, D. F., "Forced Vibrations of a Uniform Beam on Damped Flexible

End Supports," Paper No. 52-A-23, Applied Mech., Div., ASME Annual

Meeting, 1952.

Plunkett, R., "The Calculation of Optimum Concentrated Damping for

Continuous Systems," Journal of Applied Mechanics, Vol. 25, ASME

Trans., Vol. 80, 1958, pp. 219-224.

Lewis, F. M., "The Extended Theory of the Viscous Vibration Damper,"

Journal of Applied Mech., Trans. ASME, Vol 77, 1955, p. 377.

Henney, A., and Raney, J. P., "The Optimization of Damping of Four

Configurations of a Vibrating Uniform Beam," Journal of Eng. for

Industry, Trans. ASME, Aug. 1963, pp. 259-264.

Eubanks, R. A. et al., "Optimal Shock Isolator and Absorber Design

Technlques," liT Research Institute Project M6078, Final Report,
April 1965.

23. Tiber, T., and Sevin, E., "Optimal Shock Isolation Synthesis," The

Shock and Vibration bulletin, No. 35, Feb. 1966, pp. 203-215.
=,

24. Lund, J. W., "Rotor'Bear[ng Dynamics Design Technology, Part V: Com-

puter Program Manual for Rotor Response and Stability AFAPL-TR-65-45

Part V, Mech. Tech_ Inc., May 1965, Air Force Aero Propulsion Lab.,
Wright-Patterson Air Force Base, Ohio.

25.

26.

27.

Crook, A. W., and F. Grantham, "An Approach to the Prediction of the

Vibrations of Turbine Generators on Undertuned Foundations," ASME

Paper 67-VIBR-46, Presented ASME VIB. Conf., March 1967, Boston.

Gunter, E. J., Dynamic Stability of Rotor-Bearing Systems, NASA Sp-ll3

Office of Technology Utilization, U. S. Gov. Printing Office, 1966.

Thomson, W. T., Vibration Theory and Applications, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1965.

36



28.

29.

Kirk, R. C., "Design Analysis of the Jeffcott Modelof the Single
MassRotor on Flexible Supports," B.S. Thesis, Dept. of Mech. Eng.,
Univ. of Virginia, Charlottesville, Va., May1967.

Cooper, S., "Preliminary Investigation of Oil Films for Control of
Vibration," Proceedingsof the Lubrication and WearConvention, I.
Mech. E., 1963, London, England.

37



Y

-- cot

I Yjl "_yx-.._ I _..x
/ _._,, _ \,

v, .Ly7 ,-,, i \
o___ x, ---4

Ki ,_Z
-2-

C_l M_j

DAMPER

--4---M2" I

BEARING _

X
r

X

Figure I. Schematic Diagram of Single Mass Rotor on Damped Elastic Supports

38



L_

IOO_

IO-

@: I-
O

¢F

O.I-

0.01 .....

0.01

CRITICAL FREQUENCY VS SPRING RATE l

I 1 I I I I I I I I I I I!1_

..... _..-.-- _ =O.OI

_* _ I_ i- 11- _

_\ /_ I _* /_/ I./ //
O.U.._. 11 _/ / _ _ /

/ / _ I /

/
/ /

/// //
/ / /

/ I
/ I

/ /
/ /

/

I

f

f
I

I I I I I I I I I I I I I I I i I I !

O.I I IO

BEARING SUPPORT STIFFNESS RATIO, K=K_/K 2 (DIM.)

Dimensionless Critical Speeds Vs Support Stiffness Ratio for Various
Support Housing Mass Ratios

Figure 2.

IOO



0

ROTOR RELATIVE AMP. V5 FREQUENCY RATIO

K = 1.00

M = 1.00

E = 1.00

A = 10.01

C: 50.0

5-00

0.500 ].000 1.500 2.000 2.500 3.000 3.5C0

FREOUENCY RATIO (W/HC)
Figure 3. Dimensionless Relative Rotor Amplitude Vs Speed Ratio for Various Values

of Support Damping for a Tuned Support System, K = M = I
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Figure 12. Rotor Amplitude Vs Speed for a Low Mass Ratio Tuned Support SysTem

for Various Values of Support Damping K = M = 0. I, A = I0
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ROTOR MAXIMUM AMPLITUDE VS DAMPING RATIO

FOR VARIOUS STIFFNESS RATIOS
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Figure 14. Rotor Maximum Amplitude Vs Damping Ratio for Various Values of Stiffness

Ratios for a Low Mass Ratio Support, M = 0.01, A = I0
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Figure 19. Dimensionless Rotor _btion with Optimum Steady-State Damping Showing

the Steady-State Orbit After Seven Cycles o# Running Speed (K = M = 0. I,
C = 5.5)
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